
N8 7 - 25 890

INTEGRATION OF COMMUNICATIONS AND TRACKING
DATA PROCESSING SIMULATION FOR SPACE STATION

Robert C. Lacovara, E. E.
Affiliate Instructor

Department of Electrical Engineering and Computer Science
Stevens Institute of Technology

Hoboken, New Jersey

A simplified model of the communications network for the Communica-

tions and Tracking Data Processing System (CTDP) is developed. It is

simulated by use of programs running on several on-site computers. These

programs communicate with one another by means of both local area

networks and direct serial connections. The domain of the model and its

simulation is from Orbital Replaceable Unit (ORU) interface to Data

Management Systems (DMS).

The simulation was designed to allow status queries from remote

entities across the DMS networks to be propagated through the model to

several simulated ORU's. The ORU response is then propagated back to the

remote entity which originated the request. Response times at the various

levels were investigated in a multi-tasking, multi-user operating system

environment.

Results indicate that the effective bandwidth of the system may be

too low to support expected data volume requirements under conventional

operating systems. Instead, some form of embedded process control program

may be required on the node computers.

NASA Colleague: Oron L. Schmidt EE7 X6301

20-2

Introduction

Whatever the form of flight hardware which eventually comprises

Space Station, distributed processors linked by local area networks are

certainly to be incorporated. This study addresses one such distribution

which supports the Communications and Tracking Data Processor (CTDP).

This system is complex and incorporates many functions, but may be

considered a data portal to other satellites and earth stations.

Consequently, CTDP accepts and encodes on-board data for transmission,

receives data from external sources, and points antennas as required.

Additionally, various housekeeping tasks are performed. Some of these

are computationally intensive. As it progresses in orbit, for example,

Station presents parts of itself as obstacles to antenna patterns.

A real time obscuration map must be maintained so that transmit antennas

do not illuminate Station structure, experimental apparatus, or extra-

vehicular crew.

Baseline concepts of the CTDP computer network have been proposed,

and work on the implementation has started. This study examines a

simplified version of the network, reduced in number of nodes and

branches. This is not a graph-theoretic study. Instead, a network of

processors have been linked in an approximation of expected requirements

and simple programs have been installed at the computational nodes.

20-3

The objectives of the study are straightforward. The ability of

the network to handle data loads by measuring data throughputs is of

interest. So is the ability of off-shelf multi-tasking systems to operate

in an environment of mixed local area networks (LANs) and dedicated point

to point links. Lastly, some judgements are made concerning the appli-

cability of different operating systems and programming languages.

The approach of the study is direct. The linked computers executed

simple communication programs. Data loads of the magnitude estimated

for some Space Station equipment were applied to the system. The coding

was performed in C and Pascal under the Ultrix and VMS operating systems

running on a Digital Micro-Vax and a Digital 11/780. Conclusions are

drawn from the outcome.

20-4

Hardware Environment

The simplified model of the CTDP network consists of a tree whose

nodes are computers and whoses branches are either dedicated RS-232 links

or a common LAN, TCP-IP. The overall system which was modeled consisted

of 3 layers in this tree.

The root of the tree is the main CTDP processor. It communicates

via LAN with some number of subordinate processors called comtrollers

(short for communication controllers).

The comtrollers in turn communicate via point to point links such

as RS-232 with hardware modules such as signal processors, antenna gimbal

systems, and so on. These hardware modules are termed orbital replace-

able units (ORU) and are considered physically proximate to the associated

comtroller.

At the time of this study the CTDP main computer (a VAX 11/750), a

single comtroller (Micro-VAX), and a software simulation of three ORU's

on a VAX 11/780 are available.

The study utilized the comtroller and the ORU simulation under

simulated loads. The CTDP main computer was not included in this study

at the time of writing. Therefore the hardware under consideration is

a Micro-VAX connected via three dedicated RS-232 lines to three simula-

tions of ORU's on a VAX 11/780.

20-5

The structure of parent (comtroller) with three children (ORU's)

may be further elaborated. Specifically, the RS-232 line characteristics

become important. These three lines are connected at each computer to

a multiplexer, such as a Digital DZ. The salient characteristic of the

multiplexer is that the four to eight lines which it supports are handled

by a single processor local to the multiplexer. As a result, the

multiplexer throughput is significantly less than the individual line

rates supported by the device.

In this case, the three lines are operated asynchronously at 19,200

baud, with 8 bit data and single stop bit. After accounting for parity

and so on, each line could support 1,920 characters per second. The

effect of having a multiplexer for the three lines is that a total

throughput of about 775 characters per second is attained in aggregate,

as opposed to an ideal aggregate rate of 3 times 1,920 or about 6,000

characters per second. This will be seen to be a major limitation of

the simulation.

20-6

Software Environment

The comtroller is a Micro-VAX operating under Ultrix-32m. This is

a port of a Berkeley Unix operating system and supports a range of

languages and utilities. Of chief interest are the following features:

the operating system detached process utilities, the interprocess

communication support, and the programming language used for the

simulations.

Unix provides a simple mechanism to start processes detached from

the user's terminal. Almost as convenient is an interprocess communica-

tion facility called a socket mechanism. The combination of these

abilities makes it possible to • number of _o_=_ho_ _........

which may still communicate with each other via sockets.

Since it was determined early in the study that these features

would be required, the C language was chosen to code the programs which

would process data. Other languages were available, but an unfortunate

characteristic of Unix systems is an apparent disinterest in providing

"equal access" from all supported languages to the operating system

features. Although another language such as Pascal might have been

used, the differences between C and Pascal did not justify any effort

to make the Berkeley Pascal implementation compatible with all the

operating system features readily accessed from C.

The comtroller software consists of a controlling process called

CMTR, and three subordinate processes called RXT, RX6, and RX5. The

socket mechanism provides communication between CMTR and each of the

RX programs.

20-7

The three RXprograms act as interfaces to the three ORUsimulations.

The processes are run detached, and thereby provide somedegree of

parallelism in the multitasking-system. Unfortunately, the three

processes each use the sameserial line multiplexer, which essentially

destroys any efficiency gained by usingdetached processes.

CMTRperiodically querys RX7, RX6and RX5. Each of these three

programs in turn interrogates the software ORUsimulations on the 11/780.

Normally, the ORUsimulations will return between 100 and 1000 characters

as a response, and once these are received by the RXprograms they are

passed on to CMTR. CMTRthen indicates to the user the total numberof

characters transferred, the time required to transfer, and calculates

the rate of transfer. The number of transfers and size of data transferred

may be varied.

As has been indicated, the serial communication lines pass only 775

characters per second. This is the rate limiting path in the system. The

socket mechanismin comparison is far faster, and easily exceeds 50000

characters per second. As a result, of the two mechanismsused to

transfer data between processes, only degradation in response due to

the effective throughput rate of the serial communication lines need

be considered.

20-8

On receipt of a status query, the RSPprograms open an associated

text file containing data representing ORUstatus, and write this data

to an associated RS-232port. The RSPprograms do little else but

housekeeping, and each program is only 30 lines of code. In practice,

the programs exist as blocked tasks waiting to read a status query.

The ORUsimulation programs running on the 11/780 are quite simple.

There are three called RSP7,RSP6,and RSP5. These programs are like

their counterparts RXT, RX6, and RX5in that they are identical to each

other except for the I/0 ports to which they are attached. However,

these programs run detached under the VMSoperating system, and are

coded in Pascal.

20-9

Simulation Behaviour

The simulation was operated for several hours of CPUtime. Data

rate from CMTRquery through the return of the data from the three ORU's

was calulated under various conditions of system loading, data block

size, and program priority.

The result may be summarizedeasily. Using standard DZ style

multiplexers and standard Digital terminal drivers allows data rates of

the three lines to be less than 775 characters per second under any

conditions. Data rates maybe as low as 100 characters per second if

task priorities are low while the system is heavily loaded. Estimates

madeby experienced NASAstaff indicated that the traffic to be expected

from three ORU'sis likely to range from 1000 to 8000 characters per

second. In short, the commonlyavailable hardware and software, even

with informed tuning, is unacceptable in terms of realistic data

requirements.

The immediate conclusion is that specialized drivers for communica-

tion need to be developed to support block data transfer under multi-

tasking operating systems.

Several other conclusions may be drawn from observations made

during the developmentof the system.

20-10

Neither C nor Pascal are particularly appropriate languages in the

application. Neither language inherently supports concurrency or inter-

process communication. These are very desirable attributes of languages

for this application. Oneadvantage of C is that it is probably a good

choice of a language in which to write a customized driver for the serial

communication lines. The two languages are otherwise equally ill-suited

to the task of networking support.

During the course of the study, someattention was paid to the use

of ADAas a programmingenvironment. Although availability precluded

use of ADAfor this study, it appears that ADAincorporates concurrency

and communication features which make it a reasonable choice for an

embeddedcontrol application such as the present study.

Note that since concurrency and interprocess communication in the

present study are provided by the operating system, the code and tech-

niques are non-portable. It is in fact unlikely that the C code or the

Pascal code could be ported to any other operating systems and still

be madeto work. This unhappy result is due to the fact that the

socket mechanismprovided under Uitrix is not part of the C language,

but of Ultrix itself. Similar commentsmay be madeabout features of

the Pascal code.

20-11

Summary

The CTDP network may be simulated in non-real time by use of typical

operating systems and typical driver packages. Real time simulation,

and simulation of extended systems will require customized software.

Traditional modular programming languages such as C and Pascal are

unsuitable when compared to ADA. Although ADA code was not written,

examination of ADA features indicate that ADA is a potentially superior

language in the application.

20-12

